It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
ABSTRACT
This study aimed to examine the efficacy of semantic segmentation implemented by deep learning and to confirm whether this method is more effective than a commercially dominant auto-segmentation tool with regards to delineating normal lung excluding the trachea and main bronchi. A total of 232 non-small-cell lung cancer cases were examined. The computed tomography (CT) images of these cases were converted from Digital Imaging and Communications in Medicine (DICOM) Radiation Therapy (RT) formats to arrays of 32 × 128 × 128 voxels and input into both 2D and 3D U-Net, which are deep learning networks for semantic segmentation. The number of training, validation and test sets were 160, 40 and 32, respectively. Dice similarity coefficients (DSCs) of the test set were evaluated employing Smart SegmentationⓇ Knowledge Based Contouring (Smart segmentation is an atlas-based segmentation tool), as well as the 2D and 3D U-Net. The mean DSCs of the test set were 0.964 [95% confidence interval (CI), 0.960–0.968], 0.990 (95% CI, 0.989–0.992) and 0.990 (95% CI, 0.989–0.991) with Smart segmentation, 2D and 3D U-Net, respectively. Compared with Smart segmentation, both U-Nets presented significantly higher DSCs by the Wilcoxon signed-rank test (P < 0.01). There was no difference in mean DSC between the 2D and 3D U-Net systems. The newly-devised 2D and 3D U-Net approaches were found to be more effective than a commercial auto-segmentation tool. Even the relatively shallow 2D U-Net which does not require high-performance computational resources was effective enough for the lung segmentation. Semantic segmentation using deep learning was useful in radiation treatment planning for lung cancers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Division of Radiation Oncology, Saiseikai Yokohamashi Tobu-Hospital, Shimosueyoshi 3-6-1, Tsurumi-ku, Yokohama-shi, Kanagawa, 230-8765, Japan; Department of Radiology, Keio University School of Medicine, Shinanomachi 35, Shinjyuku-ku, Tokyo, 160-8582, Japan
2 Department of Radiation Oncology, Tokai University School of Medicine, Shimokasuya 143, Isehara-shi, Kanagawa, 259-1143, Japan
3 HPC&AI Business Dept., Platform Technical Engineer Div., System Platform Solution Unit, Fujitsu Limited, World Trade Center Building, 4-1, Hamamatsucho 2-chome, Minato-ku, Tokyo, 105-6125, Japan
4 Department of Radiology, Keio University School of Medicine, Shinanomachi 35, Shinjyuku-ku, Tokyo, 160-8582, Japan
5 Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, 247-0056, Japan