It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Boron neutron capture therapy (BNCT) is a binary cancer therapy that involves boron administration and neutron irradiation. The nuclear reaction caused by the interaction of boron atom and neutron produces heavy particles with highly cytocidal effects and destruct tumor cells, which uptake the boron drug. p-Boronophenylalanine (BPA), an amino acid derivative, is used in BNCT. Tumor cells with increased nutrient requirements take up more BPA than normal tissues via the enhanced expression of LAT1, an amino acid transporter. The current study aimed to assess the correlation between the expression of LAT1 and the uptake capacity of BPA using genetically modified LAT1-deficient/enhanced cell lines. We conducted an in vitro study, SCC7 tumor cells wherein LAT1 expression was altered using CRISPR/Cas9 were used to assess BPA uptake capacity. Data from The Cancer Genome Atlas (TCGA) were used to examine the expression status of LAT1 in human tumor tissues, the potential impact of LAT1 expression on cancer prognosis and the potential cancer indications for BPA-based BNCT. We discovered that the strength of LAT1 expression strongly affected the BPA uptake ability of tumor cells. Among the histologic types, squamous cell carcinomas express high levels of LAT1 regardless of the primary tumor site. The higher LAT1 expression in tumors was associated with a higher expression of cell proliferation markers and poorer patient prognosis. Considering that BPA concentrate more in tumors with high LAT1 expression, the results suggest that BNCT is effective for cancers having poor prognosis with higher proliferative potential and nutritional requirements.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute for Integrated Radiation and Nuclear Science, Kyoto University , Osaka, Japan
2 Research Center for Boron Neutron Capture Therapy, Osaka Metropolitan University , 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 , Japan
3 Institute for Integrated Radiation and Nuclear Science, Kyoto University , Osaka , Japan