Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This systematic review examines the integration of directed acyclic graph (DAG)-based blockchain technology in smart mobility ecosystems, focusing on electric vehicles (EVs), robotic systems, and drone swarms. Adhering to PRISMA guidelines, we conducted a comprehensive literature search across Web of Science, Scopus, IEEE Xplore, and ACM Digital Library, screening 1248 records to identify 47 eligible studies. Our analysis demonstrates that DAG-based blockchain addresses critical limitations of traditional blockchains by enabling parallel transaction processing, achieving high throughput (>1000 TPS), and reducing latency (<1 s), which are essential for real-time applications like autonomous vehicle coordination and microtransactions in EV charging. Key technical challenges include consensus mechanism complexity, probabilistic finality, and vulnerabilities to attacks such as double-spending and Sybil attacks. This study identifies five research priorities: (1) standardized performance benchmarks, (2) formal security proofs for DAG protocols, (3) hybrid consensus models combining DAG with Byzantine fault tolerance, (4) privacy-preserving cryptographic techniques, and (5) optimization of feeless microtransactions. These advancements are critical for deploying robust, scalable DAG-based solutions in smart mobility, and fostering secure and efficient urban transportation networks.

Details

Title
A Survey on Directed Acyclic Graph-Based Blockchain in Smart Mobility
Author
Bai, Yuhao 1   VIAFID ORCID Logo  ; Lee, Soojin 1   VIAFID ORCID Logo  ; Seung-Hyun Seo 2   VIAFID ORCID Logo 

 Department of Electronic and Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea; [email protected] (Y.B.); [email protected] (S.L.) 
 School of Electrical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea 
First page
1108
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171216697
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.