Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Known as the “white oil”, lithium is a key raw material to support strategic emerging industries and future industrial development. Zabuye Salt Lake is the only one in Tibet, China that has so far realized the industrialization of lithium extraction from the salt lake brine. The green and low-cost lithium extraction technology by using the salinity-gradient solar pond (SGSP) adopted has always been paid much attention by lithium-related practitioners and researchers. In order to improve the lithium yield and grade of a single crystallization pond, the cross-year brine mixing method can be used to increase the initial temperature and CO32− concentration of the raw brine for making the SGSP. The premise is to ensure that the summer brine with low Li+ and high CO32− prepared in the previous year could be stored safely for overwintering with a minimal change in brine composition, for use in brine mixing in February and March of the next year, which can be realized by using the SGSP. In this paper, two experiments of brine storage for overwintering were carried out in the Zabuye mining area, Tibet in 2020 and 2021 by using the large-scale SGSP with an area of nearly 4000 m2. The results show that during the operation of the SGSP in winter, the brine temperature in the lower convective zone (LCZ) can still rise to more than 20 °C and remain relatively stable, indicating that the coverage of surface ice layer not only has an effect of heat preservation and insulation on the SGSP, but also plays a positive role in the thermal storage capacity of the SGSP. The vertical distributions of brine temperature, density and salinity in the pond showed the ideal gradient curves increasing from top to bottom, and the concentrations of Li+ and CO32− in the brine only decreased slightly. The structure of the salinity-gradient layer tended to stabilize faster when the brine filling depth was larger, but the boundary between the upper convective zone (UCZ) and the non-convective zone (NCZ) was relatively blurred. It is completely feasible to store the brine for overwintering by using the SGSP in the Zabuye mining area, and the experimental results could be directly scalable to larger industrial applications. It can not only provide high-quality raw brine for cross-year brine mixing, but also reduce the pressure of brine production, and a small amount of lithium mixed salt collected is helpful to increase the output of a single crystallization pond. Additionally, the potential challenges of maintaining the SGSP system during extreme winter conditions are described, and effective measures and suggestions are proposed to make the technology feasible in diverse climates.

Details

Title
Experimental Study on Brine Storage for Overwintering by Using Salinity-Gradient Solar Pond in Zabuye Salt Lake, Tibet
Author
Wu, Qian 1   VIAFID ORCID Logo  ; Wang, Yunsheng 1 ; Zhang, Jintao 2 ; Zhang, Ke 2 ; Li, Juntao 2 ; He, Zhikui 2 ; Bu, Lingzhong 1 ; Yu, Jiangjiang 1 ; Nie, Zhen 1   VIAFID ORCID Logo 

 MNR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China 
 Tibet Mining Development Co., Ltd., Lhasa 850007, China 
First page
54
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22978739
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171230413
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.