Full Text

Turn on search term navigation

© 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming at the problems of high working resistance and high energy consumption in potato crop harvesting in sticky soil, this paper designs a potato bionic drag-reducing digging shovel based on the streamline shape of catfish head. Based on the theoretical analysis and discrete element method (DEM) simulation, the main factors affecting the digging resistance are the angle of entry, forward speed and vibration frequency, and the digging resistance increases with the increase of forward speed, and decreases with the increase of vibration frequency. Through the orthogonal test in the field, the optimal working parameters of the drag reduction performance are determined with the digging resistance as the test index, and the comparative test of the different shovel shapes is carried out with this parameter. The results show that the optimal solution is to use bionic shovel, with an entry angle of 15°, an operating speed of 0.27m/s, and a vibration frequency of 6Hz. The average digging resistance of the bionic shovel is 3612.86N, and the bionic digging shovel reduces resistance by 17.76% relative to an ordinary flat shovel, and 21.09% relative to the plane triangle shovel. The effect of drag reduction is remarkable, and the structure of the digging shovel bionic is reasonable, which can satisfy the requirements of resistance reduction and consumption reduction of potato harvesting under the conditions of sticky and heavy soils.

Details

Title
Design and experiment of a bionic drag-reducing digger for tuberous crops under heavy soil conditions
Author
Yang, Ranbing  VIAFID ORCID Logo  ; Xu, Wenjian; Pan, Zhiguo  VIAFID ORCID Logo  ; Zhang, Huan; Deng, Zhixi
First page
e0318526
Section
Research Article
Publication year
2025
Publication date
Feb 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171259719
Copyright
© 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.