It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this short communication, a novel fatty acid-binding protein 5 (FABP5)-related signal transduction pathway in prostate cancer is reviewed. In castration-resistant prostate cancer (CRPC) cells, the FABP5-related signal transduction pathway plays an important role during transformation of the cancer cells from androgen-dependent state to androgen-independent state. The detailed route of this signal transduction pathway can be described as follows: when FABP5 expression is increased as the increasing malignancy, excessive amounts of fatty acids from intra- and extra-cellular sources are transported into the nucleus of the cancer cells where they act as signalling molecules to stimulate their nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). The phosphorylated or biologically activated PPARγ then modulates the expression of its downstream target regulatory genes to trigger a series of molecular events that eventually lead to enhanced tumour expansion and aggressiveness caused by an overgrowth of the cancer cells with a reduced apoptosis and an increased angiogenesis. Suppressing the FABP5-related pathway via RNA interference against FABP5 has produced a 63-fold reduction in the average size of the tumours developed from CRPC cells in nude mice, a seven-fold reduction of tumour incidence, and a 100% reduction of metastasis rate. Experimental treatments of CRPC with novel FABP5 inhibitors have successfully inhibited the malignant progression of CRPC cells both in vitro and in nude mouse. These studies suggest that FABP5-related signal transduction pathway is a novel target for therapeutic intervention of CRPC cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine
2 Department of Biochemistry, Liverpool University, Liverpool L69 3GA, UK
3 College of Medicine, Qatar University, Doha 2713, Qatar