Abstract

We calculate information measures using the Tsallis, Rényi, and Shannon entropies for two classes (Lane–Emden and Caldirola–Kanai) of time-dependent mesoscopic RLC circuits. To determine the expressions for the entropies, we used the dynamical invariant method to obtain the exact Schrödinger wave function $\big (\psi _n (x,t)\big)$. For the state $n=0$, all the expressions found are given in terms of $\rho $, a c-number quantity satisfying a nonlinear differential equation. For the Caldirola–Kanai system, the entropies do not vary with time, but decrease with increasing damping factor. For the Lane–Emden system, the entropies decrease with increasing time. We also analyze the behavior of the Shannon and Rényi lengths in the charge and magnetic flux spaces and compare them with the respective standard deviations.

Details

Title
Tsallis, Rényi, and Shannon entropies for time-dependent mesoscopic RLC circuits
Author
Aguiar, V 1 ; Guedes, I 1 ; Pedrosa, I A 2 

 Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760, Fortaleza, CE, Brazil 
 Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900, João Pessoa, PB, Brazil 
Publication year
2015
Publication date
Nov 2015
Publisher
Oxford University Press
e-ISSN
20503911
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3171472104
Copyright
© The Author(s) 2015. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.