It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Landau states of electrons with orbital angular momentum in magnetic fields are important in the quantum theories of metals and of synchrotron radiation at storage rings, in relativistic astrophysics of neutron stars, and in many other areas. In realistic scenarios, electrons are often born inside the field or injected from a field-free region, requiring nonstationary quantum states to account for boundary or initial conditions. This study presents nonstationary Laguerre–Gaussian (NSLG) states in a longitudinal magnetic field, characterizing vortex electrons after their transfer from vacuum to the field. Comparisons with Landau states and calculations of observables such as mean energy and root-mean-square (r.m.s.) radius show that the r.m.s. radius of the electron packet in the NSLG state oscillates in time around a significantly larger value than that of the Landau state. This quantum effect of oscillations is due to boundary conditions and can potentially be observed in various problems, particularly when using magnetic lenses of electron microscopes and linear accelerators. Analogies are drawn between a quantum wave packet and a classical beam of many particles in phase space, including the calculation of mean emittance of the NSLG state as a measure of its quantum nature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer