It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Because synonymous mutations do not change the amino acid sequence of a protein, they are generally considered to be selectively neutral. Empiric data suggest, however, that a significant fraction of viral mutational fitness effects may be attributable to synonymous mutation. Bias in synonymous codon usage in viruses may result from selection for translational efficiency, mutational bias, base pairing requirements in RNA structures, or even selection against specific dinucleotides by innate immune effectors. Experimental analyses of codon usage and genome evolution have been facilitated by advances in synthetic biology, which now make it feasible to generate viral genomes that contain large numbers of synonymous mutations. The generally pleiotropic effects of synonymous mutation on viral fitness have, at times, made it difficult to define the mechanistic basis for the observed attenuation of these heavily mutated viruses. We have addressed this problem by developing a bioinformatic tool for the generation and analysis of viral sequences with large-scale synonymous mutation. A variety of permutation strategies are applied to shuffle codons within an open reading frame. After measuring the dinucleotide frequency, codon usage, codon pair bias, and free energy of RNA folding for each permuted genome, we used z-score normalization and a least squares regression model to quantify their overall distance from the starting sequence. Using this approach, the user can easily identify a large number of synonymously mutated sequences with varying similarity to a wild-type genome across a range of nucleic-acid-based determinants of viral fitness. We believe that this tool will be useful in designing genomes for subsequent experimental studies of the fitness impacts of synonymous mutation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
2 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
3 Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA