It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Age-mixing patterns are of key importance for understanding the dynamics of human immunodeficiency virus (HIV)-epidemics and target public health interventions. We use the densely sampled Swiss HIV Cohort Study (SHCS) resistance database to study the age difference at infection in HIV transmission pairs using phylogenetic methods. In addition, we investigate whether the mean age difference of pairs in the phylogenetic tree is influenced by sampling as well as by additional distance thresholds for including pairs. HIV-1 pol-sequences of 11,922 SHCS patients and approximately 240,000 Los Alamos background sequences were used to build a phylogenetic tree. Using this tree, 100 per cent down to 1 per cent of the tips were sampled repeatedly to generate pruned trees (N = 500 for each sample proportion), of which pairs of SHCS patients were extracted. The mean of the absolute age differences of the pairs, measured as the absolute difference of the birth years, was analyzed with respect to this sample proportion and a distance criterion for inclusion of the pairs. In addition, the transmission groups men having sex with men (MSM), intravenous drug users (IDU), and heterosexuals (HET) were analyzed separately. Considering the tree with all 11,922 SHCS patients, 2,991 pairs could be extracted, with 954 (31.9 per cent) MSM-pairs, 635 (21.2 per cent) HET-pairs, 414 (13.8 per cent) IDU-pairs, and 352 (11.8 per cent) HET/IDU-pairs. For all transmission groups, the age difference at infection was significantly (P < 0.001) smaller for pairs in the tree compared with randomly assigned pairs, meaning that patients of similar age are more likely to be pairs. The mean age difference in the phylogenetic analysis, using a fixed distance of 0.05, was 9.2, 9.0, 7.3 and 5.6 years for MSM-, HET-, HET/IDU-, and IDU-pairs, respectively. Decreasing the cophenetic distance threshold from 0.05 to 0.01 significantly decreased the mean age difference. Similarly, repeated sampling of 100 per cent down to 1 per cent of the tips revealed an increased age difference at lower sample proportions. HIV-transmission is age-assortative, but the age difference of transmission pairs detected by phylogenetic analyses depends on both sampling proportion and distance criterion. The mean age difference decreases when using more conservative distance thresholds, implying an underestimation of age-assortativity when using liberal distance criteria. Similarly, overestimation of the mean age difference occurs for pairs from sparsely sampled trees, as it is often the case in sub-Saharan Africa.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, Rämistrasse 100, Zürich, Switzerland; Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel; University of Basel, Petersplatz 1, Basel, Switzerland
3 Division of Infectious Diseases, Regional Hospital Lugano, Via Tesserete 46, Lugano, Switzerland
4 Laboratory of Virology and Division of Infectious Diseases, Genève University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1205 Genève; University of Genève, 24 rue du Général-Dufour, Genève, Switzerland
5 Division of Infectious Diseases, Lausanne University Hospital, Rue du Bugnon 46, Lausanne, Switzerland
6 Division of Infectious Diseases, Cantonal Hospital St Gallen, Rorschacher Strasse 95, St. Gallen, Switzerland
7 Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
8 Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, Basel, Switzerland
9 Clinic for Infectious Diseases, Bern University Hospital, Freiburgstrasse 18, Bern; University of Bern, Hochschulstrasse 6, CH-3012 Bern, Switzerland