It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bats are the natural reservoir of Coronaviruses (CoVs). Human CoVs cause mild respiratory diseases worldwide, but, in the last decade, two Beta-CoVs [Middle East respiratory syndrome (MERS)-CoV and severe acute respiratory syndrome] caused thousands of deaths and cases worldwide. Phylogenetic analysis suggested the evolutionary origin of mammalian CoVs is derived from bats. In this study, we characterized three Alpha-CoVs and two Beta-CoVs demonstrating the circulation of bat strains in Italy. Isolates were sequenced using a next-generation sequencing approach and genomes reconstructed using the online tool Galaxy Aries. Phylogenetic analyses were conducted using MEGA7 and MrBayes. Similarity plots were generated using SSE v1.2. The structure of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank. Bioinformatics analysis permitted the identification of 2 Beta-CoV complete genomes of 30 kb and three Alpha-CoV of 28 kb (named BatCoV-ITA1-5). BatCoV-ITA1 and 2 formed a monophyletic group with MERS-CoV sequences. The comparison of the concatenated domains within ORF1ab confirmed their classification into the MERS-CoV species. The 3D structure of RBD of Italian strains showed two amino acid deletions located in a region corresponding to the external subdomain of MERS-RBD. BatCoV-Ita3 and BatCoV-Ita4/5 were classified into two novel Alpha-CoV species by comparison of concatenated domains within ORF1ab. Due to the high divergence with the Alpha human spike protein strains, it was impossible to establish the protein structure and the potential affinity to human receptor. The Italian strains showed the typical organization of Alpha and Beta-CoVs. We reported two Beta-CoVs closely related to MERS-CoVs from bats belonging to common Italian species (Pipistrellus kuhlii and Hypsugo savii). The analysis of the RBD in the spike protein indicates significant differences from human RBD known to date. The three Alpha-CoV strains were classified into two novel species, confirming the high heterogeneity of CoV strains in bats. Although the studies conducted cannot confirm a risk for humans, surveillance studies are needed to investigate the genetic diversity of CoVs in bats. Because this exceeds what is known for other hosts, it is compatible with bats being the major reservoir of mammalian CoVs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
2 Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
3 Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A Bianchi, 7/9, 25124 Brescia, Italy