It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Food and water are the main sources of human exposure to arsenic. It is important to determine arsenic species in food because the toxicities of arsenic vary greatly with its chemical speciation. Extensive research has focused on high concentrations of arsenic species in marine organisms. The concentrations of arsenic species in freshwater fish are much lower, and their determination presents analytical challenges. In this review, we summarize the current state of knowledge on arsenic speciation in freshwater fish and discuss challenges and research needs. Fish samples are typically homogenized, and arsenic species are extracted using water/methanol with the assistance of sonication and enzyme treatment. Arsenic species in the extracts are commonly separated using high-performance liquid chromatography (HPLC) and detected using inductively coupled plasma mass spectrometry (ICPMS). Electrospray ionization tandem mass spectrometry, used in combination with HPLC and ICPMS, provides complementary information for the identification and characterization of arsenic species. The methods and perspectives discussed in this review, covering sample preparation, chromatography separation, and mass spectrometry detection, are directed to arsenic speciation in freshwater fish and applicable to studies of other food items. Despite progress made in arsenic speciation analysis, a large fraction of the total arsenic in freshwater fish remains unidentified. It is challenging to identify and quantify arsenic species present in complex sample matrices at very low concentrations. Further research is needed to improve the extraction efficiency, chromatographic resolution, detection sensitivity, and characterization capability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Chemistry, University of Alberta , Edmonton, Alberta , Canada
2 Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta , Canada
3 Alberta Health, Health Protection Branch , Edmonton, Alberta , Canada