It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformation. The exact solutions of three-dimensional Brans–Dicke theory, which are obtained from their Einstein-dilaton counterparts, give two novel classes of conformal-invariant black holes. When the scalar potential is absent (or is considered constant) in the action, it has been shown that the exact solution of this theory is just the conformal-invariant BTZ black hole with a trivial constant scalar field. This issue corresponds to the four-dimensional Brans–Dicke–Maxwell theory discussed in Ref. [R.-G. Cai, Y. S. Myung, Phys. Rev. D 56, 3466 (1997)]. The Brans–Dicke conformal-invariant black holes’ thermodynamic quantities have been calculated by use of the appropriator methods, and it has been shown that they satisfy the first law of black hole thermodynamics in its standard form. The thermal stability of Brans–Dicke black holes has been studied by use of the canonical ensemble method and noting the signature of the black holes’ heat capacity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physics, Razi University , Kermanshah , Iran