It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Contractile dysfunction, hypertrophy, and cell death during heart failure are linked to altered Ca2+ handling, and elevated levels of the hormone angiotensin II (AngII), which signals through Gq-coupled AT1 receptors, initiating hydrolysis of PIP2. Chronic elevation of AngII contributes to cardiac pathology, but the mechanisms linking sustained AngII signaling to heart dysfunction remain incompletely understood. Here, we demonstrate that chronic AngII exposure profoundly disrupts cardiac phosphoinositide homeostasis, triggering a cascade of cellular adaptations that ultimately impair cardiac function. Using in vivo AngII infusion combined with phospholipid mass spectrometry, super-resolution microscopy, and functional analyses, we show that sustained AngII signaling reduces PI(4,5)P2 levels and triggers extensive redistribution of CaV1.2 channels from t-tubules to various endosomal compartments. Despite this t-tubular channel loss, enhanced sympathetic drive maintains calcium currents and transients through increased channel phosphorylation via PKA and CaMKII pathways. However, this compensation proves insufficient as cardiac function progressively declines, marked by pathological hypertrophy, t-tubule disruption, and diastolic dysfunction. Notably, we identify depletion of PI(3,4,5)P3 as a critical mediator of AngII-induced cardiac pathology. While preservation of PI(3,4,5)P3 levels through PTEN inhibition did not prevent cellular remodeling or calcium handling changes, it protected against cardiac dysfunction, suggesting effects primarily through reduction of fibrosis. These findings reveal a complex interplay between phosphoinositide signaling, ion channel trafficking, and sympathetic activation in AngII-induced cardiac pathology. Moreover, they establish maintenance of PI(3,4,5)P3 as a promising therapeutic strategy for hypertensive heart disease and as a potential protective adjunct therapy during clinical AngII administration.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer