It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Studying chemical components in food of tural origin allows us to understand their nutritiol contents. However, nowadays, this alysis is performed using invasive methods that destroy the sample under study. These methods are also expensive and time-consuming. Computer vision is a non-invasive altertive to determine the nutritiol contents through digital image processing to obtain the colour properties. This work employed a probability mass function (PMF) in colour spaces HSI (hue, saturation, intensity) and CIE L*a*b* (Intertiol Commission on Illumition) as inputs for a convolutiol neural network (CNN) to estimate the anthocyanin contents in landraces of homogeneous colour. This proposal is called AnthEstNet (Anthocyanins Estimation Net). Before applying the CNN, a methodology was used to take digital images of the bean samples and extract their colourimetric properties represented by PMF. AnthEstNet was compared against regression methods and artificial neural networks (ANN) with different characterisation in the same colour spaces. The performance was measured using precision metrics. Results suggest that AnthEstNet presented a behaviour statistically equivalent to the invasive method results (pH differential method). For probabilistic representation in channels H and S, AnthEstNet obtained a precision value of 87.68% with a standard deviation of 10.95 in the test set of samples. As to root mean square error (RMSE) and R2, this configuration was 0.49 and 0.94, respectively. On the other hand, AnthEstNet, with probabilistic representations on channels a* and b* of the CIE L*a*b* colour model, reached a precision value of 87.49% with a standard deviation of 11.84, an RMSE value of 0.51, and an R2 value of 0.93.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer