Abstract

Re-entry capsules' success depends significantly on dynamic and static stability, particularly before deploying the main parachute. Determining the range of dynamic instability and investigating the underlying causes is crucial for designing the entry capsule's control system. Dynamic stability is analyzed in this study based on pitch moment coefficients obtained from forced oscillation experiments conducted in the trisonic wind tunnel for the Orion entry capsule. The results reveal that pressure fluctuations at the aftbody of this model begin at Mach 2. The findings and other research results emphasize the significant role of the aftbody geometry in generating dynamic instability at low supersonic speeds due to its interaction with vortex flow. The results also demonstrate that increasing the Mach number to 2.2 would result in a near zero-pressure coefficient on the capsule's aftbody, which implies that there is no acting force on the aftbody. The results show that as the freestream Mach number increases from M= 1.8 to M= 2.2, the pressure on the aftbody remains unchanged during the pitching motion due to approaching the shear layer towards the body and consequent shrinking of the aftbody vortex. Furthermore, the sensitivity of dynamic stability to the mean angle of attack was investigated. It is shown that a slight increase of approximately 5 degrees in the mean angle of attack can considerably enhance the re-entry capsule's dynamic stability.

Details

Title
Experimental Dynamic Stability Investigation on Orion Entry Capsule in Supersonic Flow
Author
Sargolzaie, M; Fazeli, H; Soltani, M R
Pages
1301-1311
Section
Regular Article
Publication year
2025
Publication date
May 2025
Publisher
Isfahan University of Technology
ISSN
1735-3572
e-ISSN
1735-3645
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3173358280
Copyright
© 2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.