Full Text

Turn on search term navigation

© 2025 Kresock et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Nearest-neighbor projected-distance regression (NPDR) is a metric-based machine learning feature selection algorithm that uses distances between samples and projected differences between variables to identify variables or features that may interact to affect the prediction of complex outcomes. Typical tabular bioinformatics data consist of separate variables of interest, such as genes or proteins. In contrast, resting-state functional MRI (rs-fMRI) data are composed of time-series for brain regions of interest (ROIs) for each subject, and these within-brain time-series are typically transformed into correlations between pairs of ROIs. These pairs of variables of interest can then be used as inputs for feature selection or other machine learning methods. Straightforward feature selection would return the most significant pairs of ROIs; however, it would also be beneficial to know the importance of individual ROIs.

Results

We extend NPDR to compute the importance of individual ROIs from correlation-based features. We introduce correlation-difference and centrality-based versions of NPDR. Centrality-based NPDR can be coupled with any centrality method and can be coupled with importance scores other than NPDR, such as random forest importance scores. We develop a new simulation method using random network theory to generate artificial correlation data predictors with variations in correlations that affect class prediction.

Conclusions

We compared feature selection methods based on detection of functional simulated ROIs, and we applied the new centrality NPDR approach to a resting-state fMRI study of major depressive disorder (MDD) participants and healthy controls. We determined that the areas of the brain that have the strongest network effect on MDD include the middle temporal gyrus, the inferior temporal gyrus, and the dorsal entorhinal cortex. The resulting feature selection and simulation approaches can be applied to other domains that use correlation-based features.

Details

Title
Centrality nearest-neighbor projected-distance regression (C-NPDR) feature selection for correlation-based predictors with application to resting-state fMRI study of major depressive disorder
Author
Kresock, Elizabeth; Dawkins, Bryan; Luttbeg, Henry; Yijie (Jamie) Li; Kuplicki, Rayus; McKinney, B A  VIAFID ORCID Logo 
First page
e0319346
Section
Research Article
Publication year
2025
Publication date
Mar 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3174736420
Copyright
© 2025 Kresock et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.