Full Text

Turn on search term navigation

© 2025 Stevens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Autonomous data collection is rapidly becoming an integral part of water quality monitoring, particularly for agencies looking to manage and protect aquatic ecosystems. While beneficial, it is unclear how the collection of these data can be applied in spatially complex large lakes (e.g., Laurentian Great Lakes) given the spatial heterogeneity of the ecosystem. To address this potential shortcoming in large lakes, we assessed the synchrony of sensor variables between 10 pairs of static buoys in the western basin of Lake Erie (western basin surface area =  3,282 km2). Within western Lake Erie, water temperature was highly synchronous whereas dissolved oxygen, turbidity, chlorophyll and phycocyanin were asynchronous. The extent of this asynchrony was higher with increasing spatial distance between buoys. We found that between pairs of static buoys, temperature, dissolved oxygen, and turbidity all experienced decreasing correlations with increasing distance. Our results show that if researchers intend to leverage these data to answer important questions and provide real-time applications related to environmental issues like harmful algal/cyanobacterial blooms, monitoring networks need to be designed carefully with spatial complexity in mind. While autonomous data collection has many benefits, the reliance on a single or limited network of anchored monitoring buoys in large lake ecosystems has a high probability of missing important spatial features of these systems.

Details

Title
Limnological data derived from high frequency monitoring buoys are asynchronous in a large lake
Author
Stevens, Claire  VIAFID ORCID Logo  ; Frost, Paul C; Pearce, Nolan J T; Kelley, James D; Zastepa, Arthur  VIAFID ORCID Logo  ; Xenopoulos, Marguerite A  VIAFID ORCID Logo 
First page
e0314582
Section
Research Article
Publication year
2025
Publication date
Mar 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3174736851
Copyright
© 2025 Stevens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.