It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Pulmonary diseases such as COVID-19 and pneumonia, are life-threatening conditions, that require prompt and accurate diagnosis for effective treatment. Chest X-ray (CXR) has become the most common alternative method for detecting pulmonary diseases such as COVID-19, pneumonia, and lung opacity due to their availability, cost-effectiveness, and ability to facilitate comparative analysis. However, the interpretation of CXRs is a challenging task.
Methods
This study presents an automated deep learning (DL) model that outperforms multiple state-of-the-art methods in diagnosing COVID-19, Lung Opacity, and Viral Pneumonia. Using a dataset of 21,165 CXRs, the proposed framework introduces a seamless combination of the Vision Transformer (ViT) for capturing long-range dependencies, DenseNet201 for powerful feature extraction, and global average pooling (GAP) for retaining critical spatial details. This combination results in a robust classification system, achieving remarkable accuracy.
Results
The proposed methodology delivers outstanding results across all categories: achieving 99.4% accuracy and an F1-score of 98.43% for COVID-19, 96.45% accuracy and an F1-score of 93.64% for Lung Opacity, 99.63% accuracy and an F1-score of 97.05% for Viral Pneumonia, and 95.97% accuracy with an F1-score of 95.87% for Normal subjects.
Conclusion
The proposed framework achieves a remarkable overall accuracy of 97.87%, surpassing several state-of-the-art methods with reproducible and objective outcomes. To ensure robustness and minimize variability in train-test splits, our study employs five-fold cross-validation, providing reliable and consistent performance evaluation. For transparency and to facilitate future comparisons, the specific training and testing splits have been made publicly accessible. Furthermore, Grad-CAM-based visualizations are integrated to enhance the interpretability of the model, offering valuable insights into its decision-making process. This innovative framework not only boosts classification accuracy but also sets a new benchmark in CXR-based disease diagnosis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer