It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
To assess the influence of various factors on the bond strength of glass-based ceramics and develop a model that can predict the bond strength values using machine learning (ML).
Methods
The bond strength values of lithium disilicate-reinforced glass–ceramics were collected from existing literature. Nineteen features were listed, and 9 ML algorithms, including logistic regression, k-nearest neighbors, support vector machine, decision tree, ensemble methods (extra trees, random forest, gradient boosting, and extreme gradient boosting), and multilayer perceptron, were employed. Importance analysis was performed to determine the significance of the 19 features. A new data set comprising the top five contributing features was used for bond strength class prediction. Grid search cross-validation (CV) and stratified tenfold CV were employed for hyperparameter tuning and model performance assessments. The evaluation metrics used were the area under the receiver operating characteristic curve (AUC) and accuracy. Nested CV was also employed to assess the model performance and avoid untruly optimistic results.
Results
A total of 193 bond strength values were collected. Hydrofluoric acid concentration and etching time, gamma-methacryloxypropyltrimethoxysilane or 10-methacryloxydecyldihydrogen phosphate in the primer, and Bis-GMA in the cement were the top five features contributing to the bond strength. Stratified CV produced AUC scores of 0.71–0.93 and accuracy scores of 0.64–0.83. Extreme gradient boosting achieved superior model performance and accuracy and demonstrated good performance in predicting the range of bond strength values.
Conclusions
ML shows promise as a data-driven tool for predicting the bond strength of glass-based ceramics to resin.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer