It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Primary osteoblasts are essential for bone formation and regeneration, making them pivotal in dental applications, including periodontal regeneration, ridge augmentation, and implant osseointegration. Sourced from various tissues like alveolar bone, calvarial bone, mandibular and maxillary bones, long bones, and bone marrow-derived stem cells (BMSCs), each type of osteoblast presents unique advantages and limitations related to yield, accessibility, and clinical relevance. Given these variables, selecting an appropriate source is crucial for experimental consistency and translational application in dentistry.
Methods
This review synthesizes data from in vitro, animal, and clinical studies to provide a comprehensive overview of osteoblast sourcing, isolation, and characterization in dental research. Sources were reviewed based on yield, anatomical relevance, and accessibility, while isolation methods were compared to assess their impact on cell behavior and phenotype retention. The review evaluates methods such as enzymatic digestion, explant culture, and differentiation of BMSCs, alongside characterization techniques like morphological analysis, gene expression profiling, and mineralization assays.
Results
The analysis shows that alveolar bone-derived osteoblasts offer high clinical relevance due to their anatomical similarity to oral structures but are limited by low yield and invasive collection. Calvarial and long bone osteoblasts provide higher yields, making them useful for material testing, though they lack biomechanical compatibility with oral environments. BMSCs offer a renewable source with significant regenerative potential but require precise differentiation protocols. In vitro studies contribute mechanistic insights, while animal models bridge the gap to clinical application, despite challenges in standardization and interspecies variability.
Conclusion
This review highlights the importance of selecting appropriate osteoblast sources and methods for dental research to optimize outcomes in periodontal and implant-related therapies. The variability across study designs and experimental outcomes underscores the need for standardized protocols and targeted systematic reviews within specific research settings. These findings offer a framework for future osteoblast-based research and guide the effective translation of osteoblast therapies into clinical dental practice.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer