Full text

Turn on search term navigation

© 2025 Lai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Underwater vision is essential in numerous applications, such as marine resource surveying, autonomous navigation, objective detection, and target monitoring. However, raw underwater images often suffer from significant color deviations due to light attenuation, presenting challenges for practical use. This systematic literature review examines the latest advancements in color correction methods for underwater image enhancement. The core objectives of the review are to identify and critically analyze existing approaches, highlighting their strengths, limitations, and areas for future research. A comprehensive search across eight scholarly databases resulted in the identification of 67 relevant studies published between 2010 and 2024. These studies introduce 13 distinct methods for enhancing underwater images, which can be categorized into three groups: physical models, non-physical models, and deep learning-based methods. Physical model-based methods aim to reverse the effects of underwater image degradation by simulating the physical processes of light attenuation and scattering. In contrast, non-physical model-based methods focus on manipulating pixel values without modeling these underlying degradation processes. Deep learning-based methods, by leveraging data-driven approaches, aim to learn mappings between degraded and enhanced images through large datasets. However, challenges persist across all categories, including algorithmic limitations, data dependency, computational complexity, and performance variability across diverse underwater environments. This review consolidates the current knowledge, providing a taxonomy of methods while identifying critical research gaps. It emphasizes the need to improve adaptability across diverse underwater conditions and reduce computational complexity for real-time applications. The review findings serve as a guide for future research to overcome these challenges and advance the field of underwater image enhancement.

Details

Title
Color correction methods for underwater image enhancement: A systematic literature review
Author
Yong Lin Lai  VIAFID ORCID Logo  ; Tan Fong Ang  VIAFID ORCID Logo  ; Uzair Aslam Bhatti; Ku, Chin Soon  VIAFID ORCID Logo  ; Han, Qi  VIAFID ORCID Logo  ; Lip Yee Por  VIAFID ORCID Logo 
First page
e0317306
Section
Research Article
Publication year
2025
Publication date
Mar 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3175931469
Copyright
© 2025 Lai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.