Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

In this study, the model performance in classifying FAMACHA© scores was evaluated using Support Vector Machines (SVMs) by focusing on estimating the FAMACHA© scoring system used in the early diagnosis and treatment management of parasitic infections. The reliability of the SVM model used in this study was examined in detail with metrics such as sensitivity, specificity, and positive/negative predictive values. As a result, it was revealed that SVM is an effective method in classifying FAMACHA© scores and provides important information for future applications. These results may contribute to the development of scientific approaches for the management of parasitic infections.

Details

Title
Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
Author
Oswaldo Margarito Torres-Chable 1   VIAFID ORCID Logo  ; Tırınk, Cem 2   VIAFID ORCID Logo  ; Parra-Cortés, Rosa Inés 3 ; Miguel Ángel Gastelum Delgado 1 ; Ignacio Vázquez Martínez 1 ; Gomez-Vazquez, Armando 1   VIAFID ORCID Logo  ; Cruz-Hernandez, Aldenamar 1 ; Camacho-Pérez, Enrique 4   VIAFID ORCID Logo  ; Dzib-Cauich, Dany Alejandro 5 ; Şen, Uğur 6   VIAFID ORCID Logo  ; Tüfekci, Hacer 7   VIAFID ORCID Logo  ; Bayyurt, Lütfi 8 ; Çelik, Hilal Tozlu 9   VIAFID ORCID Logo  ; Yılmaz, Ömer Faruk 10   VIAFID ORCID Logo  ; Chay-Canul, Alfonso J 1   VIAFID ORCID Logo 

 Division Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Teapa, km 25, Villahermosa CP 86280, Tabasco, Mexico; [email protected] (O.M.T.-C.); [email protected] (M.Á.G.D.); [email protected] (I.V.M.); [email protected] (A.G.-V.); [email protected] (A.C.-H.); [email protected] (A.J.C.-C.) 
 Department of Animal Science, Faculty of Agriculture, Igdir University, TR76000 Iğdır, Türkiye 
 Área de Ciencias Agropecuarias, Grupo de Investigación en Ciencia Animal, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, Bogotá CP 111166, Colombia; [email protected] 
 Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes s/n, Mérida CP 97203, Yucatán, Mexico; [email protected] 
 Tecnológico Nacional de México, Instituto Tecnológico Superior de Calkiní, Av. Ah-Canul, Calkiní CP 24900, Campeche, Mexico; [email protected] 
 Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, TR55139 Samsun, Türkiye; [email protected] 
 Department of Animal Science, Faculty of Agriculture, Yozgat Bozok University, TR66000 Yozgat, Türkiye; [email protected] 
 Department of Animal Science, Faculty of Agriculture, Gaziosmanpaşa University, TR60250 Tokat, Türkiye; [email protected] 
 Department of Food Processing, Vocational School of Ulubey, Ordu University, TR52850 Ulubey, Türkiye; [email protected] 
10  Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, TR55139 Samsun, Türkiye; [email protected] 
First page
737
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176287218
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.