Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ataxin-2 (Atx2), an RNA-binding protein, plays a pivotal role in the regulation of RNA, intracellular metabolism, and translation within the cellular environment. Although both the Sm-like (LSm) and LSm-associated (LSmAD) domains are considered to associated with RNA binding, there is still a lack of experimental evidence supporting their functions. To address this, we designed and constructed several recombinants containing the RNA-binding domain (RBD) of Atx2. By employing biophysical and biochemical techniques, such as EMSA and SHAPE chemical detection, we identified that LSm is responsible for RNA binding, whereas LSmAD alone does not bind RNA. NMR and small-angle X-ray scattering (SAXS) analyses have revealed that the LSmAD domain exhibits limited structural integrity and poor folding capability. The EMSA data confirmed that both LSm and LSm-LSmAD bind RNA, whereas LSmAD alone cannot, suggesting that LSmAD may serve as an auxiliary role to the LSm domain. SHAPE chemical probing further demonstrates that LSm binds to the AU-rich, GU-rich, or CU-rich sequence, but not to the CA-rich sequence. These findings indicate that Atx2 can interact with the U-rich sequences in the 3′-UTR, implicating its role in poly(A) tailing and the regulation of mRNA translation and degradation.

Details

Title
The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain
Author
Zhang, Shengping 1 ; Zhang, Yunlong 1 ; Chen, Ting 1 ; Hong-Yu, Hu 2 ; Lu, Changrui 1 

 College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; [email protected] (S.Z.); [email protected] (Y.Z.); [email protected] (T.C.) 
 Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China 
First page
383
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176297497
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.