Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An accurate understanding of the tensile mechanical behavior of shale rock is essential for optimizing shale gas drilling and hydraulic fracturing operations. However, the mechanical behavior of shale is significantly influenced by its anisotropy. Therefore, this study investigated the tensile mechanical behavior of layered shale by combining acoustic emission (AE) monitoring with two testing methods: the Brazilian splitting test (BST) and a novel direct tensile test (DTT). The impact of anisotropy on the tensile mechanical behavior and failure modes of layered shale under different test methods was evaluated. Additionally, seven anisotropic tensile strength criteria were compared and validated using the experimental results. The results show that: (1) As the loading angle (β) increased, the tensile strength measured by both BST and DTT increased. Both methods exhibited maximum tensile strength at β = 90° and minimum tensile strength at β = 0°. The anisotropy ratios for BST and DTT were 1.52 and 2.36, respectively, indicating the significant influence of the loading angle on tensile strength. (2) The AE results indicated that both DTT and BST specimens exhibited brittle failure characteristics. However, the DTT specimens demonstrated more pronounced progressive failure behavior, with failure modes categorized into four types: tensile failure across the bedding plane, shear failure along the bedding plane, and two types of tensile–shear mixed failure. In contrast, the BST specimens primarily exhibited tensile–shear mixed failure, except for tensile failure along the bedding plane at β = 0° and tensile failure across the bedding plane at β = 90°. (3) Neither of the two test methods could fully eliminate the influence of anisotropy, but three anisotropic tensile criteria, the Lee–Pietruszczak criterion, the critical plane approach criterion, and the anisotropic mode I fracture toughness criterion based on the stress–strain transformation rule demonstrated high accuracy in predicting tensile strength. Furthermore, in alignment with previous studies, the indirect tensile strength of various rock types was found to range between one and three times the direct tensile strength, and a linear correlation between the two variables was established, with a coefficient of approximately 1.11.

Details

Title
Experimental Investigation on the Tensile Mechanical Behavior of Layered Shale Using Direct and Indirect Test Methods
Author
Fadhel, Ali M 1 ; Ma, Tianshou 1   VIAFID ORCID Logo  ; Wang, Haonan 2   VIAFID ORCID Logo 

 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; [email protected] 
 School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; [email protected] 
First page
2669
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176306895
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.