Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid advancement of artificial intelligence (AI) has spurred innovation across various domains—information technology, medicine, education, and the social sciences—and is likewise creating new opportunities in architecture for understanding human–environment interactions. This study aims to develop a fine-tuned AI model that leverages electroencephalography (EEG) data to analyse users’ emotional states in real time and apply these insights to architectural spaces. Specifically, the SEED dataset—an EEG-based emotion recognition resource provided by the BCMI laboratory at Shanghai Jiao Tong University—was employed to fine-tune the ChatGPT model for classifying three emotional states (positive, neutral, and negative). Experimental results demonstrate the model’s effectiveness in differentiating these states based on EEG signals, although the limited number of participants confines our findings to a proof of concept. Furthermore, to assess the feasibility of the proposed approach in real architectural contexts, we integrated the model into a 360° virtual reality (VR) setting, where it showed promise for real-time emotion recognition and adaptive design. By combining AI-driven biometric data analysis with user-centred architectural design, this study aims to foster sustainable built environments that respond dynamically to human emotions. The results underscore the potential of EEG-based emotion recognition for enhancing occupant experiences and provide foundational insights for future investigations into human–space interactions.

Details

Title
Emotion Analysis AI Model for Sensing Architecture Using EEG
Author
Seung-Yeul Ji  VIAFID ORCID Logo  ; Kim, Mi-Kyoung; Han-Jong, Jun  VIAFID ORCID Logo 
First page
2742
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176310290
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.