Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the context of the rapid development of modern science and technology, time synchronization technology has become a critical support in the fields of communication and scientific research. Especially in large-scale research projects such as the China Spallation Neutron Source, the accuracy of time synchronization directly affects the precision of experimental data and the reliability of experimental results. White Rabbit (WR) technology surpasses the sub-microsecond precision limitations of traditional PTPs by precisely controlling and calibrating the delays between master and slave clocks, achieving sub-nanosecond time synchronization that meets the stringent timing accuracy requirements of 5G networks and quantum communications. To meet the demands for high precision, high flexibility, and broad applicability, a switch with WR functionality has been designed based on the Zynq platform. This design not only reduces the number of required components and the complexity of the soldering process but also allows for simple AXI bus communication between the PS and PL ends, thereby decreasing the development time and cost of both software and hardware. The hardware design includes power circuits, clock circuits, and SFP interface circuits. The time synchronization module encompasses the design of the RTU, NIC, SoftPLL, and PPS modules, as well as the design of the AXI to Wishbone bridge. Testing has shown that this switch can achieve sub-nanosecond level time synchronization accuracy.

Details

Title
Design of Time-Synchronized Switch Based on Zynq
Author
Ma, Yichao; Hao, Rongrong; Wang, Zhenghui; Li, Junpeng
First page
2727
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176313659
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.