Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Transfer learning (TL) has been employed in electroencephalogram (EEG)-based brain–computer interfaces (BCIs) to enhance performance for cross-session and cross-subject EEG classification. However, domain shifts coupled with a low signal-to-noise ratio between EEG recordings have been demonstrated to contribute to significant variations in EEG neural dynamics from session to session and subject to subject. Critical factors—such as mental fatigue, concentration, and physiological and non-physiological artifacts—can constitute the immense domain shifts seen between EEG recordings, leading to massive inter-subject variations. Consequently, such variations increase the distribution shifts across the source and target domains, in turn weakening the discriminative knowledge of classes and resulting in poor cross-subject transfer performance. In this paper, domain adaptation algorithms, including two machine learning (ML) algorithms, are contrasted based on the single-source-to-single-target (STS) and multi-source-to-single-target (MTS) transfer paradigms, mainly to mitigate the challenge of immense inter-subject variations in EEG neural dynamics that lead to poor classification performance. Afterward, we evaluate the effect of the STS and MTS transfer paradigms on cross-subject transfer performance utilizing three EEG datasets. In this case, to evaluate the effect of STS and MTS transfer schemes on classification performance, domain adaptation algorithms (DAA)—including ML algorithms implemented through a traditional BCI—are compared, namely, manifold embedded knowledge transfer (MEKT), multi-source manifold feature transfer learning (MMFT), k-nearest neighbor (K-NN), and Naïve Bayes (NB). The experimental results illustrated that compared to traditional ML methods, DAA can significantly reduce immense variations in EEG characteristics, in turn resulting in superior cross-subject transfer performance. Notably, superior classification accuracies (CAs) were noted when MMFT was applied, with mean CAs of 89% and 83% recorded, while MEKT recorded mean CAs of 87% and 76% under the STS and MTS transfer paradigms, respectively.

Details

Title
Single-Source and Multi-Source Cross-Subject Transfer Based on Domain Adaptation Algorithms for EEG Classification
Author
Rito Clifford Maswanganyi 1 ; Tu, Chunling 1 ; Pius Adewale Owolawi 1   VIAFID ORCID Logo  ; Du, Shengzhi 2   VIAFID ORCID Logo 

 Department of Computer Systems Engineering, Tshwane University of Technology, Pretoria 0183, South Africa; [email protected] (C.T.); [email protected] (P.A.O.) 
 Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0002, South Africa; [email protected] 
First page
802
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176336097
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.