Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Midazolam is a benzodiazepine that is utilized for the induction of anesthesia and the facilitation of procedural sedation. Despite the absence of stereogenic centers, the non-planar seven-membered ring devoid of reflection symmetry elements confers planar stereogenicity to the molecule. Due to the rapid conformational inversion of the Rp and Sp enantiomers, which occurs via a simple ring flip, high-performance liquid chromatography (HPLC) enantiomeric separation is restricted to sub-room temperature conditions. In this study, the energy barriers for the racemization of midazolam at five distinct temperatures and in acetonitrile/water mixtures were determined by monitoring the decay of the circular dichroism signal at a specific wavelength over time. The kinetic and thermodynamic data obtained were compared with those determined by dynamic enantioselective high-performance liquid chromatography using the Chiralpak IG-3 chiral stationary phase, which contains the amylose tris(3-chloro-5-methylphenylcarbamate) as the selector. The temperature-dependent dynamic HPLC of midazolam was carried out at the same temperatures and with the same aqueous mixtures used in parallel kinetic off-column experiments. To simulate dynamic chromatographic profiles, a lab-made computer program based on a stochastic model was utilized. The results indicated that the moderate influence of the stationary phase resulted in a slight increase in the activation barriers, which was more pronounced as the time spent in the column increased. This phenomenon was found to be mitigated when switching from a 250 mm × 4.6 mm, 3 µm, Chiralpak IG-3 column to a 50 mm × 4.6 mm, 1.6 µm, Chiralpak IG-U UHPLC column. The outcomes obtained under UHPLC conditions were found to be more closely aligned with those obtained through the ECD technique, with a discrepancy of only 0.1 kcal/mol or less, indicating a high degree of concordance between the two methods.

Details

Title
Determination of the Enantiomerization Barrier of Midazolam in Aqueous Conditions by Electronic Circular Dichroism and Dynamic Enantioselective HPLC/UHPLC
Author
Mammone, Francesca Romana 1   VIAFID ORCID Logo  ; Sadutto, Daniele 1   VIAFID ORCID Logo  ; Antoniella, Eleonora 1 ; Pierini, Marco 2   VIAFID ORCID Logo  ; Cirilli, Roberto 1   VIAFID ORCID Logo 

 Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; [email protected] (F.R.M.); [email protected] (D.S.); [email protected] (E.A.) 
 Department of Drug Chemistry and Technology, “Sapienza” University of Rome, 00185 Rome, Italy 
First page
1108
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176381034
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.