Content area
Full text
Abstract
Palms (Arecaceae) are perhaps the most important tropical plant family for human use, both for utility and ornamental horticulture. The wide diversity of palm species with different seed germination characteristics necessitates tailoring horticultural practices to the needs of each. This is crucial for production and conservation horticulture. In this study, wild-collected seeds of yarey palm (Copernicia berteroana) and buccaneer palm (Pseudophoenix sargentii) were germinated in a variety of organic (standard nursery container mixes) and inorganic substrates. The yarey palm seeds were sown at two different depths, 0.5 inch and at the surface (seed half exposed). Mean maximum germination across all treatments for yarey palm was 79% and for buccaneer palm 60%. The standard nursery mixes generally fostered the best germination and long-term survival. This is likely due to a combination of the lower water availability at the surfaces of the more porous inorganic substrates (sand and perlite) and greater difficulty for coarse palm roots to penetrate the denser inorganic substrates, including fired ceramic, which otherwise had similar water-holding capacity (WHC) and even lower air space than the organic substrates. Difficulty of penetration caused roots of some seedlings to either dry up early in germination as in the surface sown yarey palm, or to “push up” the seed (buccaneer palm) rather than penetrating the substrate and this was often fatal. Thus, inorganic substrates are not recommended for germination and early seedling growth of these palm species and planting the seeds slightly below the surface may be preferable to surface sowing. For conservation horticulture of wild-collected palm seeds, this information can help prevent further genetic bottlenecks while under protective cultivation.
Palm horticulture makes some of the most beautiful, useful, and emblematic tropical plants available to the world. Horticulture also provides a viable means of conserving palm genetic diversity (Fotinos et al., 2015) even when this was not the original intent (Asmussen-Lange et al., 2011). As few as 15 individuals grown from seed from a wild palm population can capture 80% or more of the genetic diversity in the original population (Namoff et al., 2010), though life history and breeding system should be taken into account when formulating a collecting strategy to maximize genetic capture (Griffith et al., 2015). Furthermore, horticulture can reduce...