It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Natural gas, known for its cleanliness and cost-effectiveness, is transported across vast distances through pipelines. However, the safety concerns that arise from potential ruptures or leaks in these pipelines pose serious threats to the environment and human safety. This paper assesses the reliability of pipelines that have undergone corrosion, compounded by the fluid hammer effect observed in the liquefied gas flow. Machine learning models including support vector machines, linear discriminant analysis, random forest bagging, and Artificial Neural Networks have been meticulously crafted to forecast the safety status of pipelines, considering variables such as the pipe dimensions, material characteristics, fluid velocity, and flow rate. The design of the experiment methodology plays a pivotal role in calculating the pressure surge in pipelines corroded over time due to ongoing corrosion effects. The proposed machine learning models based on simulated data aim to predict the safety status of corroded pipelines with an accuracy rate of up to 97% in controlled environments. Integrating the proposed machine learning models for reliability analysis and pressure surge detection in corroded pipelines, in conjunction with the fluid hammer effect, offers an innovative approach to identifying risks and hazards.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer