It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Past studies revealed that excess pore pressure generation due to cyclic loading is highly governed by induced strains, volumetric deformation potential of soil, number of cycles, and bulk stiffness of pore fluid. It is well established that partial saturation can significantly reduce bulk stiffness of pore fluid and consequently excess pore pressure generation during seismic loading. On the basis of that, a number of researchers have investigated induced partial saturation as an effective soil improvement technique to increase the liquefaction resistance of fully saturated soils. This paper focuses on development of a semi- empirical model to interpret the effects of partial saturation on the excess pore pressure generation in sands. In this regard, an existing strain based excess pore pressure ratio (ru) prediction model originally developed for fully saturated soils was modified to incorporate the effect of partial saturation on the excess pore pressure generation. The literature data as well as data from a series of strain-controlled direct simple shear test were used to evaluate the reliability of the proposed equation in predicting the excess pore pressure ratio in partial saturation condition.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer