It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mobile, near-source measurements are broadly used for determining δ13CH4 of individual methane (CH4) emissions sources. To answer the need for robust and comparable measurement methods, we aim to define the best practices to determine isotopic signatures of CH4 sources from atmospheric measurements, considering instrument accuracy and precision. Using the Keeling and Miller-Tans methods, we verify the impact of linear fitting methods, averaging approaches, and for the Miller-Tans method, different background composition. Measurement techniques include Isotope Ratio Mass Spectrometry (IRMS) and Cavity Ring Down Spectroscopy (CRDS). The use of the active AirCore system for sampling, coupled to CRDS for measurement, is examined. Due to their higher precision and accuracy, the chosen data processing strategy does not significantly influence IRMS results. Comparatively lower-precision CRDS measurements are more sensitive to methodological choices. Fitting methods with forced symmetry like Major Axis or Bivariate Correlated Errors and Intrinsic Scatter (BCES) with orthogonal sub-method introduce significant bias in the determined δ13CH4 signatures using measurements from the lower-precision CRDS. The most reliable results are obtained for non-averaged data using fitting methods, which include uncertainties of x- and y-axis values, like York fitting or BCES (Y|X) sub-method, where x is treated as an independent variable. The Ordinary Least Squares method provides sufficiently robust results and can be used to determine δ13CH4 in near-source conditions. The present recommendations are aimed at laboratories measuring δ13CH4 source signatures to encourage consistency in the required methods for data analysis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer