It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Induction motors (IMs) are the most widely used electrical machines in industrial applications. However, they are subject to various mechanical and electrical faults. Eccentricity faults are among the common mechanical faults of IMs. This study compares the performance of four commonly used machine learning (ML) methods, including k-nearest neighbours (k-NN), decision tree (DT), support vector machine (SVM), and random forest (RF) along with the statistical features in detecting eccentricity faults of IMs with an automated machine learning (AutoML) model. The aim of using AutoML in this study is to fully automate the process of detection of eccentricity faults of IMs by selecting the classifier with the highest accuracy rate and shortest computation time along with the most effective feature(s). The eccentricity fault analysed in this study was experimentally implemented in the laboratory. Three-axis vibration signals were collected for healthy and eccentricity-faulty IMs. In the proposed study the three-axis vibration signals are pre-processed to determine the statistical features that are used as input to the ML methods. The proposed study offers the best ML method among the four studied algorithms and the need for expert knowledge of ML and eccentricity fault detection. The proposed AutoML model offers the DT method along with the z-axis rms feature for the highest accuracy rate and the shortest computation time in detecting the eccentricity fault.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer