It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
NOABSTRACT
Nematode-trapping fungi (NTFs) can produce various chitinases to degrade nematode body wall and eggshell chitin during predation. However, the regulatory mechanisms of their expression of chitinases still remain unclear. The primary objective of this study was to elucidate the differential protein profile of A. oligospora, an NTF, in response to chitin.
Colloidal chitin was added to induce the culture of A. oligospora, and the phenotypic differences before and after induction were observed under inverted microscope. The differential proteins before and after mycelium induction were screened by liquid chromatography-tandem mass spectrometry. The differentially expressed chitinase was expressed in Pichia yeast, and the recombinant enzyme was incubated with Caenorhabditis elegans and its egg suspension to explore its biological activity.
It was found that there was a significant acceleration in the mycelial growth post chitin interaction in A. oligospora. A total of 1,124 differentially expressed proteins (DEPs) were identified between the control group (AO-c) and the experimental group (AO-e), with 183 upregulated and 941 downregulated. Gene Ontology analysis revealed that the DEPs acted in various metabolic processes with catalysis and binding functions. Kyoto Encyclopedia of Genes and Genomes analysis associated these proteins primarily with signalling pathways related to glucose metabolism. Three chitinases were significantly modulated among DEPs. Moreover, enzymatic activity assays demonstrated that one of them effectively degraded C. elegans and its eggs.
These findings suggest that A. oligospora can significantly alter its protein expression profile in response to chitin, thereby facilitating its sugar metabolism and mycelial development. Our study provided new insights into the regulatory mechanisms of nematode predation in A. oligospora.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details










1 College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China