It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Improving the air quality of indoor environments (IAQ) is of utmost importance to safeguard public health as people spend about 80–90% of their time indoor. Efficient Ultraviolet germicidal irradiation (UVGI) system represents a strategic and sustainable solution to protect from recurrent and new airborne pathogens. Here, we present a new approach to design highly efficient UVGI systems, which can be installed in existing Air Treatment Units (ATU) plants with minimal effort. The increased efficiency relies on the concept of an optical cavity, thanks to its shape and source position. The internal volume consists of a highly reflective cavity illuminated with UV-C lamps. Optical simulations permitted the variation of the parameters to maximize the internal irradiance and, thus, the performance. The sanitation efficacy of the system was assessed on a full-scale pilot system. Tests were carried out under normal operating conditions against various microorganisms showed an inactivation rate of > 99%. The benefits of such systems are triple and encompass economic, environmental, and societal aspects. Since the system requires little energy to operate, its application for air disinfection may yield significant energy savings and ensure a balance between energy sustainability and good IAQ.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer