Abstract

Low carbon is a key driver for the future development of power systems. This paper proposes a carbon-energy synergetic approach for economic dispatch in energy power systems. Firstly, by integrating multi-energy conversion models and carbon emission flow theories, a coupled interactive mechanism model is constructed. Building upon this foundation, an economic optimization dispatch model for comprehensive energy power systems is introduced, leveraging the synergistic value of carbon energy. This method supports economic dispatch in comprehensive energy power systems, considering both security and economic requirements while reducing carbon emissions. This integrated approach offers a promising solution for achieving low-carbon operational objectives and supporting the transition to sustainable energy infrastructure. Typical case studies in this paper validate the effectiveness of the proposed method.

Details

Title
Carbon-Energy Synergetic Energy Power System Economic Dispatch Method
Author
Chong, Zhiqiang; Song, Hongyu; Li, Zhenbin; Chen, Liang; Yu Guangyao; Guo Haochen; Wu, Zhijun; Dong Yitong
Section
Smart Grid and Hydropower Resources Development
Publication year
2024
Publication date
2024
Publisher
EDP Sciences
ISSN
25550403
e-ISSN
22671242
Source type
Conference Paper
Language of publication
English
ProQuest document ID
3181275661
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.