Full Text

Turn on search term navigation

© 2025 Ross et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bacteriophage Sf14 is a Moogle-like myovirus that infects Shigella flexneri. S. flexneri is a human pathogen that replicates intracellularly in the intestine, but it persists in a low metabolic state in environmental fresh water sources. Though closely related to FelixO1, Moogleviruses were more recently discovered within the last 10 years; thus, mechanistic knowledge of their infection cycles is still being gathered. This work investigated the combined effects of temperature and nutrient concentration on both host growth and phage replication. In combination, a total of 16 different conditions were analyzed. Results indicate that nutrient-rich media facilitate shorter infection cycles and support phage production at all temperatures. As nutrient content decreased, temperature significantly affected both host cell replication and phage production. Results indicate phage genomes are entering the cells and genes are actively expressed; however, there is a significant delay in expression, which could allow bacterial populations to outpace phage growth.

Details

Title
Bacterial lysis or survival after infection with phage Sf14 depends on combined nutrient and temperature conditions
Author
Ross, Nykki D; Chin, Alexis L; Pannuri, Archana; Doore, Sarah M  VIAFID ORCID Logo 
First page
e0319836
Section
Research Article
Publication year
2025
Publication date
Mar 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181319186
Copyright
© 2025 Ross et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.