Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The yield and quality of rice are influenced by soil conditions, and the soil issues in saline–alkaline land limit agricultural productivity. The saline–alkaline fields in the northern irrigation area of Yinchuan, Ningxia, China, face challenges such as low rice yield, poor quality, low fertilizer utilization efficiency, and soil salinity and alkalinity obstacles. To improve this situation, this study conducted experiments in 2022–2023 in the saline–alkaline rice–crab integrated fields of Tongbei Village, Tonggui Township, Yinchuan. This study employed a single-factor comparative design, applying 150 mL·hm−2 of brassinolide (A1), 15 kg·hm−2 of diatomaceous (A2), 30 kg·hm−2 of Bacillus subtilis agent (A3), and an untreated control (CK) to analyze the effects of different biological amendments on rice growth, photosynthesis, yield, quality, and microbial communities. The results indicated that, compared with CK, the A3 increased the SPAD value and net photosynthetic rate by 2.26% and 28.59%, respectively. Rice yield increased by 12.34%, water use efficiency (WUE) by 10.67%, and the palatability score by 2.82%, while amylose content decreased by 8.00%. The bacterial OTUs (Operational Taxonomic Units) and fungal OTUs increased by 2.18% and 22.39%, respectively. Under the condition of applying 30 kg·hm−2 of Bacillus subtilis agent (A3), rice showed superior growth, the highest yield (8804.4 kg·hm−2), and the highest microbial OTUs. These findings provide theoretical and technical support for utilizing biological remediation agents to achieve desalinization, yield enhancement, quality improvement, and efficiency in saline–alkali rice–crab co–culture paddies.

Details

Title
Effects of Different Biological Amendments on Rice Physiology, Yield, Quality, and Soil Microbial Community of Rice–Crab Co-Culture in Saline–Alkali Soil
Author
Guo, Yang 1 ; Tian, Juncang 2 ; Wang, Zhi 3   VIAFID ORCID Logo 

 Institute of Civil Engineering and Water Conservancy Engineering, Ningxia University, Yinchuan 750021, China; [email protected] 
 Institute of Civil Engineering and Water Conservancy Engineering, Ningxia University, Yinchuan 750021, China; [email protected]; Ningxia Water Saving Irrigation and Water Resources Control Engineering Technology Research Center, Yinchuan 750021, China; Engineering Research Center of Ministry of Education of Modern Agricultural Water Resources Utilization in Dry Area, Yinchuan 750021, China 
 Department of Earth and Environmental Sciences, California State University, Fresno, CA 93740, USA 
First page
649
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181344951
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.