Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The analysis of human gait is a cornerstone in diagnosing and monitoring a variety of neuromuscular and orthopedic conditions. Recent technological advancements have paved the way for innovative methodologies that combine multimodal neuroimaging and eXtended Reality (XR) technologies to enhance the precision and applicability of gait analysis. This review explores the state-of-the-art solutions of an advanced gait analysis approach, a multidisciplinary concept that integrates neuroimaging, extended reality technologies, and sensor-based methods to study human locomotion. Several wearable neuroimaging modalities such as functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), commonly used to monitor and analyze brain activity during walking and to explore the neural mechanisms underlying motor control, balance, and gait adaptation, were considered. XR technologies, including virtual, augmented, and mixed reality, enable the creation of immersive environments for gait analysis, real-time simulation, and movement visualization, facilitating a comprehensive assessment of locomotion and its neural and biomechanical dynamics. This advanced gait analysis approach enhances the understanding of gait by examining both cerebral and biomechanical aspects, offering insights into brain–musculoskeletal coordination. We highlight its potential to provide real-time, high-resolution data and immersive visualization, facilitating improved clinical decision-making and rehabilitation strategies. Additionally, we address the challenges of integrating these technologies, such as data fusion, computational demands, and scalability. The review concludes by proposing future research directions that leverage artificial intelligence to further optimize multimodal imaging and XR applications in gait analysis, ultimately driving their translation from laboratory settings to clinical practice. This synthesis underscores the transformative potential of these approaches for personalized medicine and patient outcomes.

Details

Title
Advancing Gait Analysis: Integrating Multimodal Neuroimaging and Extended Reality Technologies
Author
Gramigna, Vera 1 ; Palumbo, Arrigo 1 ; Perri, Giovanni 2 

 Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; [email protected] 
 Radiological Center Perri, 87100 Cosenza, Italy; [email protected] 
First page
313
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181355618
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.