Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hydrogen sulfide (H2S) is an important signaling molecule involved in various physiological and pathological processes, making its accurate detection in biological systems highly desirable. In this study, two fluorescent probes (M1 and M2) based on 1,8-naphthalimide were developed for H2S detection via a nucleophilic aromatic substitution. M1 demonstrated high sensitivity and selectivity for H2S in aqueous media, with a detection limit of 0.64 µM and a strong linear fluorescence response in the range of 0–22 µM of NaHS. The reaction kinetics revealed a rapid response, with a reaction rate constant of 7.56 × 102 M−1 s−1, and M1 was most effective in the pH range of 6–10. Mechanism studies using 1H NMR titration confirmed the formation of 4-hydroxyphenyl-1,8-naphthalimide as the product of H2S-triggered nucleophilic substitution. M1 was applied in MDA-MB-231 cells for cell imaging, in which M1 provided significant fluorescence enhancement upon NaHS treatment, confirming its applicability for detecting H2S in biological environments. In comparison, M2, designed with extended conjugation for red-shifted emission, exhibited weaker sensitivity due to the reduced stability of its naphtholate product and lower solubility. These results demonstrate that M1 is a highly effective and selective fluorescent probe for detecting H2S, providing a valuable resource for investigating the biological roles of H2S in health and disease.

Details

Title
Development of a Rapid-Response Fluorescent Probe for H2S: Mechanism Elucidation and Biological Applications
Author
Dvorak, Trevor 1 ; Hernandez-Sandoval, Haley 1 ; Cheku, Sunayn 2   VIAFID ORCID Logo  ; Marijose Mora Valencia González 3 ; Borer, Linus 1 ; Grieser, Riley 1 ; Carlson, Kimberly A 2   VIAFID ORCID Logo  ; Cao, Haishi 1   VIAFID ORCID Logo 

 Department of Chemistry, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA 
 Department of Biology, University of Nebraska at Kearney, 2504 9th Ave, Kearney, NE 68849, USA[email protected] (K.A.C.) 
 Facultad de Medicina Región Veracruz, Universidad Veracruzana, C. Agustín de Iturbide S/N, Zona Centro, Veracruz 91700, Mexico 
First page
174
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181356262
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.