Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rehydroxylation (RHX) dating technique offers a promising method for determining the ages of ceramic materials, leveraging the time-dependent mass gain from water reabsorption after high-temperature firing. However, the reliability of RHX dating is under discussion in many cases, with its accuracy depending on the various component materials in ceramics. In the present study, we considered the incomplete removal of weakly bonded water molecules during the conventional preheating step at 105 °C, a phenomenon that may lead to inaccurate mass measurements and overestimates of age. In this study, we propose an enhanced experimental protocol incorporating thermogravimetric analysis (TGA) to identify and quantify interstitial water fractions within ceramics. For samples exhibiting significant water retention (>1%), we recommend preheating at relatively higher temperatures (up to 300 °C) to ensure complete water removal and a more accurate mass determination. This approach was tested on five archaeological samples, yielding improved consistency and agreement with independently known dates. The method highlights the importance of tailored preheating protocols in RHX dating of ancient ceramics.

Details

Title
Weakly Bonded Water in Interstitial Sites: A Source of Inaccuracy in Rehydroxylation Dating
Author
Martini, Marco  VIAFID ORCID Logo  ; Galli, Anna  VIAFID ORCID Logo  ; Panzeri, Laura  VIAFID ORCID Logo  ; Maspero, Francesco
First page
2885
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181416119
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.