Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Unmanned aerial vehicles must achieve precise flight maneuvers despite disturbances, parametric uncertainties, modeling inaccuracies, and limitations in onboard sensor information. This paper presents a robust adaptive control for trajectory tracking under nonlinear disturbances. Firstly, parametric and modeling uncertainties are addressed using model reference adaptive control principles to ensure that the dynamics of the aerial vehicle closely follow a reference model. To address the effects of disturbances, a modified nonlinear disturbance observer is designed based on estimated state variables. This observer effectively attenuates constant, nonlinear disturbances with variable frequency and magnitude, and noises. In the next step, a two-stage sliding mode control strategy is introduced, incorporating adaptive laws and a commanded-filter to compute numerical derivatives of the state variables required for control design. An error compensator is integrated into the framework to reduce numerical and computational delays. To address sensor inaccuracies and potential failures, a high-gain observer-based state estimation technique is employed, utilizing the separation principle to incorporate estimated state variables into the control design. Finally, Lyapunov-based stability analysis demonstrates that the system is uniformly ultimately bounded. Numerical simulations on a DJI F450 quadrotor validate the approach’s effectiveness in achieving robust trajectory tracking under disturbances.

Details

Title
Commanded Filter-Based Robust Model Reference Adaptive Control for Quadrotor UAV with State Estimation Subject to Disturbances
Author
Ahmed, Nigar 1 ; Alrasheedi, Nashmi 2   VIAFID ORCID Logo 

 College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116062, China; [email protected] 
 Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia 
First page
181
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181427718
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.