Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A magnetic lead screw (MLS) uses the magnetic field of permanent magnets to convert between linear and rotational motions while achieving a gearing action. This mechanism converts low-speed, high-force linear motion to high-speed, low-torque rotational motion. The MLS is ideal for wave energy applications, where the low-speed oscillatory motion of waves can be converted into usable electrical energy. It harnesses the high-force, low-speed linear motion of waves and converts it into rotational motion for generators, all while maintaining contact-free power transfer, reducing maintenance and machine size compared to linear machines. In this study, two controllers are proposed for an ideal Halbach magnetic lead screw: a proportional-resonant (PR) controller and an observer-based state feedback controller (O-SFC). The proportional-integral (PI) controller is also presented as a benchmark. These controllers are developed based on the linearized model of the ideal Halbach MLS and validated through simulation studies of its non-linear model. Results show that both the PR and O-SFC controllers significantly improve system performance compared to the PI controller, with the O-SFC providing superior performance over both the PR and PI controllers.

Details

Title
Classical and Advanced Controllers for Ideal Halbach Magnetic Lead Screw for Ocean Wave Energy Applications
Author
Mostafa, Doha 1   VIAFID ORCID Logo  ; Zribi, Mohamed 1 ; Hussain, Hussain A 1   VIAFID ORCID Logo 

 Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat, Kuwait City 13060, Kuwait; [email protected] (D.M.); [email protected] (M.Z.) 
First page
1447
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181462333
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.