Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A novel 316L stainless steel Vertex Modified BCC (VM-BCC) lattice unit cell with attractive performance characteristics is developed. Lattice structure, as well as the sandwich panel, are constructed. Numerical simulation is utilized to simulate the quasi-static compression, dynamic compression and blast behavior considering the rate-dependent properties, elastoplastic response and nonlinear contact. Finite element results are validated by comparing with the experimental results. Parametric studies are conducted to gain insight into the effects of loading velocity, equivalent TNT load and explosion distance on the dynamic behavior of the lattice pattern and sandwich panel. Testing results indicate that the proposed 316L stainless steel VM-BCC structure exhibits more superior plateau stress and specific energy absorption (SEA) than those of the BCC or Octet one. The proposed novel lattice will provide reference for improving the protective efficiency in key equipment fields and enhancing overall safety.

Details

Title
Dynamic Compression and Blast Failure Behavior of a Biomimetic Novel Lattice with Vertex Modifications Made of 316L Stainless Steel
Author
Zhou, Fei 1 ; Xue, Zhihua 2 ; Cao, Xiaofei 2   VIAFID ORCID Logo 

 Department of Administration, Huangjiahu Campus, Wuhan University of Science and Technology, Wuhan 430065, China; [email protected] 
 Department of Engineering Mechanics, Nanhu Campus, Wuhan University of Technology, Wuhan 430070, China; [email protected] 
First page
284
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181641706
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.