Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ultrasonic welding is characterized by its energy-saving and environmentally friendly nature. Compared to conventional molten welding technology, the intermetallic compounds formed by diffusion during ultrasonic welding are thinner, and material deformation is reduced. This process has become a primary welding technique for assembling lithium batteries in electric vehicles. Aluminum and copper ultrasonic welding has increasingly gained attention as a research hotspot. The research on aluminum and copper ultrasonic welding primarily focuses on the interfacial microstructure evolution, mechanical performance during the welding process, and numerical simulations to investigate macro- and micro-scale physical phenomena. Given the aluminum and copper multi-layer structures used in lithium battery packaging, numerous studies have been conducted on aluminum and copper multi-layer ultrasonic welding. For Al/Cu joints, advancements in understanding the microstructure evolution, joint performance, and finite element modeling of the welding process have been systematically reviewed and summarized. Moreover, significant progress has been made in molecular dynamics simulations of Al/Cu ultrasonic welding and hybrid welding techniques based on Al/Cu ultrasonic welding. Finally, several new research directions for Al/Cu ultrasonic welding and joining have been proposed to guide further in-depth studies.

Details

Title
Advances in Experimentation and Numerical Modeling of Aluminum and Copper Ultrasonic Welding
Author
Li, Zhe 1 ; Wu, Shiying 1 ; Li, Huan 2 

 School of Electromechanical, Guangzhou Railway Polytechnic, Guangzhou 511300, China; [email protected] 
 School of Mechanical Engineering, Yangtze University, Jingzhou 434000, China 
First page
263
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181669202
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.