Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This letter presents a scheme for obtaining a microwave photonic frequency multiplier with low phase noise, in which an optoelectronic oscillator (OEO) is integrated with a directly modulated laser (DML)-based injection-locking technique. The system achieves frequency multiplication factors of 10 and 20, producing 10.01009 and 19.99095 GHz microwave signals with high side-mode suppression ratios of 62.0 and 50.2 dB. The measured single-sideband phase noise values are −121.87 and −111.95 dBc/Hz@10 kHz, which are 34.9 and 31.0 dB lower than those of traditional electronic frequency multiplication methods for 1 GHz signals. By utilizing the nonlinear characteristics of the DML, combined with injection locking and the OEO system, this cost-effective scheme reduces the system complexity while enhancing the stability and phase noise performance, offering a highly efficient solution for microwave frequency multiplication.

Details

Title
Optoelectronic Oscillator-Based Microwave Photonic 20× Frequency Multiplier with Low Phase Noise
Author
Shi, Jia  VIAFID ORCID Logo  ; Zhang, Qifan  VIAFID ORCID Logo  ; Zhang, Tianhao; Yu, Jinlong
First page
317
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181669240
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.