Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Under pulsed discharge conditions, high-power thyristors face challenges such as an excessively high current rise rate (di/dt) and the issue of triggering front expansion, which are difficult to accurately simulate. Traditional modeling approaches often neglect the non-uniform distribution and expansion process of the internal current within the silicon wafer. In this study, we address these limitations by incorporating these critical factors into our analysis. Using a two-dimensional device–circuit co-simulation approach, we investigate the current, temperature, and thermal power distribution within the thyristor during the turn-on process under pulsed discharge conditions. Based on the simulation results, we derive the velocity equation governing the transverse expansion of the thyristor current. Furthermore, we establish a three-dimensional finite element model of the thyristor and develop a generalized extended model for complex gate structures. These models enable us to obtain the transient temperature distribution during the thyristor turn-on process under pulsed conditions. Finally, we conduct cycle surge life tests on various types of thyristors, providing valuable insights for the selection and optimization of thyristors designed for pulsed applications.

Details

Title
Investigation of Transient Thermal Behavior in Thyristors Under Pulse Conditions
Author
Zhang, Guanxiang; Zhang, Xiao; Lu, Junyong; Dai, Yufeng; Ma, Tao; Zhu, Bofeng
First page
291
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181669865
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.