Abstract

In this research, the optimization of composite materials for improving their mechanical properties is investigated. It is achieved by applying different compositions of the PTLLDPE matrix, SiC nanoparticles, and carbon fibre filler. For this purpose, six composite samples are prepared using different compositions of PTLLDPE from 40% to 60%, SiC nanoparticles from 0% to 3%, and carbon fibre filler from 10% to 20%, which are mechanically tested . Results show that tensile strength increases with increasing PTLLDPE contents, Sample 6 having the highest value of 62 MPa. As the SiC nanoparticles contents increase, the flexural strength and impact resistance increases, Sample 4 having the highest flexural strength at 75 MPa and impact resistance at 200 J/m2. The hardness increases with increasing carbon fiber fillers, Sample 6 having the highest hardness value at 88 shore D. This is important in the synthesis and the optimization of composite formulations, helping various industries in in their choice and application of the composites.

Details

Title
Enhancing Mechanical Properties of Composites with Plasma-Treated Linear Low-Density Propylene Matrix, SiC Nanoparticles, and Carbon Fiber Filler
Author
Saleh Al Ansari, Mohammed; Kaliappan, S; Sree, G Vanya; Prabhakar, Pranav Kumar; Maranan, Ramya; Pawan Devidas Meshram
Publication year
2024
Publication date
2024
Publisher
EDP Sciences
ISSN
25550403
e-ISSN
22671242
Source type
Conference Paper
Language of publication
English
ProQuest document ID
3181720374
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.