It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The current research explores the optimization of Silicon Carbide particle-reinforced aluminum metal matrix composites to improve mechanical properties. An integrated method based on Taguchi Design of Experiment and Artificial Neural Network has been adopted, with the novel approach to explore the optimal combination of parameters. The obtained best set includes the minimum load of 30 N, the minimum speed of 100 rpm, and the larger composition of 9% SiC particle. The designed L9 orthogonal experimental plan was used to conduct the experiments, and the findings explicitly indicated the significant impacts on the reduction of specific wear rate and friction force . Furthermore, the Artificial Neural Network trained through the backpropagation algorithm estimated all the percentages correctly to the ideal combination, equivalent to 100% in predicting the target responses. Moreover, the confirmation experience has validated the optimal combination, as it approaches specific wear rate of 0.0019, and friction force was 10.5. These results highlight the role of the integrated research approach for assessing the optimal parameters of aluminum MMCs to the required mechanical properties. Consequently, the current study highlights the importance of experimental plan integration and predictive modeling for optimizing materials, and it applies to various engineering fields where wear resistance and friction performance are critical.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer